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Abstract. The increasing complexity of modern programs motivates
software engineers to often rely on the support of third-party libraries.
Although this practice allows application developers to achieve a com-
pelling time-to-market, it often makes the final product bloated with
conspicuous chunks of unused code. Other than making a program un-
necessarily large, this dormant code could be leveraged by willful at-
tackers to harm users. As a consequence, several techniques have been
recently proposed to perform program debloating and remove (or secure)
dead code from applications. However, state-of-the-art approaches are
either based on unsound strategies, thus producing unreliable results, or
pose too strict assumptions on the program itself.

In this work, we propose a novel abstract domain, called Signedness-
Agnostic Strided Interval, which we use as the cornerstone to design a
novel and sound static technique, based on abstract interpretation, to
reliably perform program debloating. Throughout the paper, we detail
the specifics of our approach and show its effectiveness and usefulness by
implementing it in a tool, called BinTrimmer, to perform static program
debloating on binaries.

Our evaluation shows that BinTrimmer can remove up to 65.6% of a
library’s code and that our domain is, on average, 98% more precise than
the related work.

1 Introduction

Computer applications and services are continuously getting more sophisticated,
and, as a result, their software is becoming more complex. Besides, the attempt
to reduce the time-to-market is putting software engineers under an enormous
amount of pressure. As a result, more and more software developers choose
to rely on the help of ready-to-use third-party libraries to implement complex
software functionality. Since third-party libraries are meant to be used by a wide
variety of applications, a specific program relying on them does not commonly
use all of the library functionality. That is, there exists code in the third-party
library that is superfluous for the final application. Other than merely making a
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program unnecessarily big, this dead code is potentially dangerous as it increases
the surface (i.e., the amount of code) an attacker has to harm the users. In fact, if
the main application has a vulnerability that can be used to redirect the program
execution to the dead code, this code could be leveraged by an attacker to gain
greater capabilities. The process of decreasing the attack surface of a program
by inhibiting the execution of its dead code is called program debloating.

In the literature, several approaches have been recently proposed to identify
and remove [15] (or secure [46]) dead code from programs. Unfortunately, other
than posing strong assumptions about the availability of the programs’ test
cases [25,33], source code [29] and run time support [5], these approaches are
hardly employable in practice as they often rely on unsound strategies, and,
therefore, unable to guarantee the correct functioning of the debloated program.

Theoretically, perfect program debloating is achieved by identifying and re-
moving all and only those portions of code that are unreachable by any execution
of a program. Using the definition of soundness and completeness as defined by
Xu et al. in [44], we can reduce this problem to creating the ideal (i.e., complete
and sound) Control Flow Graph (CFG) of a given application, and removing all
the code not referenced by it. Though the generation of the ideal CFG is proven
to be an undecidable problem [23,30], the necessary condition to remove any code
from a program while guaranteeing its correctness is for the CFG to be complete.
Of course, an increasingly precise CFG (i.e., containing a small number of spuri-
ous control-flow transfers) would lead to the removal of more significant portions
of dead code. Unfortunately, precisely determining the control-flow transfers of
an arbitrary program is challenging, as the program might contain code point-
ers whose targets are resolved at runtime (indirect control-flow transfers). This
problem could be solved by computing the exact set of values that the program
pointers can assume during any execution of the program itself. Unfortunately,
this is a hard problem [23,31]. In literature, several techniques [1,12,18,26] have
been proposed to approximate the set of values assumed by program variables
through their range. However, either they are applicable when the signedness of
a variable (i.e., signed or unsigned) is known, which is usually not the case in
binary programs, or their results are too imprecise for practical uses.

In this work, we take a step further and propose a novel abstract domain,
which we call the Signedness-Agnostic Strided Interval (SASI) domain, specifi-
cally designed to achieve sound program debloating on binaries. Then, we pro-
pose and detail a novel and sound approach that leverages our domain to safely
perform static program debloating on binary files. The advantage of our ap-
proach is threefold: First, it can be used on binaries for different architectures.
Second, it does not make any assumptions on the availability of test cases or
source code, and, therefore, it can be applied to every program. Third, and more
importantly, our approach is sound, which means that the correct execution of
the debloated program can be mathematically guaranteed. We demonstrate the
effectiveness of our approach by implementing it in a tool, called BinTrimmer.
To the best of our knowledge, this is the first test-case-agnostic, static debloat-
ing technique that works directly on binaries. Furthermore, we show that our
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new abstract domain, SASI, improves the precision (on average by 98%) of value
ranges of all the variables in the program, compared to the related work. We
have implemented (and open-sourced) our abstract domain atop two analysis
frameworks: LLVM, for source code 3, and angr, for binary code 4.

In summary, our contributions are the following:

– We propose the first sound, test-case agnostic program debloating approach
for binaries.

– We design and formalize a novel signedness-agnostic abstract domain, which
outclasses the related work in terms of both soundness and precision, and
implement it in two different frameworks: LLVM (for source code analysis)
and angr (for binary analysis).

– We implemented our approach in a prototype, called BinTrimmer, that
using iterative value-flow refinement, recovers a complete and precise CFG
from a binary, identifies unreachable code, and removes it.

– We perform a preliminary evaluation of BinTrimmer on real-world appli-
cations and show that our approach is effective at program debloating.

– We extensively evaluate our abstract domain, SASI, against domains pro-
posed in related work on both source code and binary files.

2 Background and Motivation

Value range analysis [35] is a particular type of data-flow analysis that tracks the
range of values that a numeric entity (e.g., a program variable) might assume at
any point of a program’s execution. These analyses are built on top of abstract
domains [9,8,13], and can be utilized to guide the recovery of a program’s CFG
by: (i) helping to determine control dependencies between programs statements,
and (ii) resolving the targets of indirect control-flow transfers.

1 void main() {
2 uint8_t opt;
3 void (*f_ptr)(void) = [foo, bar, baz]; // foo, bar, and baz are
4 // defined in another module
5 scanf("%"SCNu8, &opt);
6 opt = (opt * 2) + 1;
7 // ...
8 if (opt == 0) {
9 f_ptr[0](); // call to foo

10 } else if(op == 100){
11 f_ptr[1](); // call to bar
12 } else if (opt > 127) {
13 f_ptr[2](); // cal to baz
14 }
15 }

Source Code 1.1: Precisely determining variable values is crucial to recover the ideal CFG.

Consider for instance Code 1.1. A sound and precise value range analysis
would determine that: (i) The variable opt can only assume odd values, and (ii)

3 https://github.com/ucsb-seclab/sasi
4 https://github.com/angr/claripy/blob/master/claripy
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the function pointer f ptr can point to the functions foo, bar, and baz. A CFG
recovery algorithm employing this range analysis would leverage these two pieces
of information to retrieve a complete and sound CFG. Precisely, the algorithm
would determine that the if conditions at Line 8 and Line 10 are never satisfied,
and, therefore, that the functions foo and bar are dead code and they should
not appear in the program’s CFG.

To recover a complete and (possibly) sound CFG, the CFG recovery algo-
rithm should rely on a sound and precise range analysis. To produce sound
results, range analyses must be able to reason about the signedness of program
variables. Considering the example in Code 1.1, if a given range analysis as as-
sumes incorrectly that the variable opt is signed, it would determine that opt

cannot assume values higher than 127, and, therefore, the if condition at Line
12 would be considered unsatisfied under any execution of the program. While
the source code of programs written with strong-typed languages (e.g., C/C++)
explicitly state a variable signedness, determining such information in binaries
is a hard problem [4,24]. In these cases, the solution is to consider each variable
as both signed and unsigned, that is, to make the domain of each variable in
a program signedness-agnostic. The first step in this direction has been taken
by Navas et al. [27], who proposed an abstract domain called Wrapped Intervals
(WI), which represents both signed and unsigned numeric values. Albeit sound,
Wrapped Intervals produce too imprecise results to be applicable in practice. In
fact, in this domain, a variable can assume any of the values within a range,
whereas, in practice, only some of the values might be assumed during any exe-
cution of the program. This imprecision might impact the soundness of a CFG.
Consider Code 1.1, and assume that the range analysis employed by the CFG
recovery algorithm determines that the variable opt can assume every value be-
tween 1 and 255. In this case, the CFG recovery algorithm would mistakenly
establish that the if condition at Line 10 can be satisfied, and, therefore, that
the function bar should be included in the program’s CFG.

In this work, we restore this loss of precision, while maintaining signed-
ness agnosticism, by designing a domain based on the fundamental concepts
of Wrapped Intervals, but supporting a stride. We call this domain Signedness-
Agnostic Strided Interval. The use of a stride allows us to precisely determine the
values that a program variable can assume (e.g., odd values for opt in Code 1.1),
thus improving the precision of a program CFG.

Our domain is particularly suited for binary analysis. In fact, there are several
high-level code constructs (e.g., switch-case statements) that are translated in
binary code in a way (e.g., through jump tables) that Wrapped Intervals would
not handle well. In these cases, the use of a stride would significantly improve the
precision of the overall analysis (e.g., by precisely enumerating the destinations
of a jump table).



Title Suppressed Due to Excessive Length 5

Fig. 1: Iterative CFG Refinement Algorithm. Fig. 2: Signed-Agnostic Strided Interval (SASI).

3 Overview

Our approach to soundly perform code debloating of a program P is based on the
recovery of a complete and precise CFG for P . Given a program P to debloat,
if the CFG G for P is complete, every basic block not present in G can be
safely removed from P without hindering its correctness. However, the more G
is precise, the more basic blocks can be safely removed from P . In fact, if G is
also sound all the useless basic blocks would be removed from P . To achieve this
goal, we designed a new technique called Iterative CFG Refinement.

3.1 Iterative CFG Refinement

Given a function f (e.g., the address of a program’s entry point), the Iterative
CFG Refinement procedure iteratively builds f ’s CFG and leverages a sound
algorithm based on value-range analysis to refine it.

The Iterative CFG Refinement algorithm relies on the availability of a pro-
cedure PCFG to recover the CFG of the function f . We assume that PCFG can
recover all the basic blocks and code boundaries within f . We do not make any
further assumptions about the precision of PCFG. For example, PCFG could be
simply defined as a procedure that creates edges among all the possible basic
blocks of f . The iterative CFG refinement algorithm is depicted in Figure 1, and
can be divided into three main components, which we explain in the remaining
of this section.

CFG and VSA. First, we use PCFG to compute f ’s CFG, and add f to
a function set (initially empty). Then, we perform a Value-Set Analysis [1] (or
VSA) on each function in the function set. The VSA is a static analysis based



6 N. Redini et al.

on abstract interpretation [8] that determines a conservative approximation of
the set of numeric values and addresses that variables assume at each program
point within a function f . The VSA utilizes our abstract domain SASI (detailed
in Section 4) to analyze f and retrieve precise information about the binary
variables (i.e., registers and memory locations).

Checker. The Checker module utilizes the VSA results to augment and
refine the CFG through two different sub-modules: the Branch Annotator, and
the Target Solver.

The Branch Annotator retrieves each CFG’s conditional edge ec (i.e., guarded
by an if-then-else condition), and analyzes the logical expression of the condition
that determines whether ec would be taken or not at runtime. To this end, it
relies on the abstract operations defined on SASI (shown in Appendix A) to
evaluate the theoretical satisfiability of the expression. If no solution exists, the
Branch Annotator annotates ec and marks it for removal.

On the other hand, the Target Solver considers f ’s basic blocks and collects
those having indirect control-flow transfers (e.g., due to an indirect call). It then
uses the VSA information to gather the set of function targets to which each
indirect flow transfer can resolve, and add them to a set Ft. These functions are
used to recover a new augmented CFG and to bootstrap a new round of VSA.

When a fixed-point is reached, that is when no new flow transitions are
discovered (i.e., Ft = 0) and no new edge is annotated, the current CFG (i.e.,
CFGi) is passed to the Filter module.

Filter. The Filter module scans every edge in CFGi and removes each an-
notated edge. Then, for each basic block b in CFGi, it checks whether it exists
an inbound edge for b. If not, it retrieves all the nodes dominated (as defined
in graph theory [43]) by b and removes them from CFGi. Finally, it returns the
filtered CFGp.

3.2 Program Debloating

From a security point of view, the problem of program debloating is formulated
as decreasing the attack surface of a program by removing its dead code. This
goal can be achieved with two different techniques: (i) deleting the dead code
from the binary, (ii) rewriting the dead code with useless instructions (e.g., hlt).

Though both approaches effectively remove the potentially dangerous dead
code from a program, the former presents more challenges. In fact, if the code
of a binary is modified, potentially all of its code and data pointers must be
updated to reflect the new program layout. In literature, two main approaches
are proposed to achieve this goal: Binary Instrumentation and Binary Rewrit-
ing. In the former approach, a binary file is usually augmented with pieces of
trampoline code that fix the program pointers at runtime [3,14,28,46]. In the
latter approach, Binary Rewriting techniques [40,41] attempt to achieve perfect
disassembling (i.e., by solving code and data pointers), thus being able to recom-
pile a program. Unfortunately, any of the techniques mentioned above present
several limitations and trade-offs (e.g., ignoring computed code pointers) that
hinder their soundness.
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For this reason, to preserve the soundness of our approach, we decided to
eliminate the dead code of a program by rewriting it. This approach, though not
decreasing the size of a program itself, presents mainly two advantages: (i) the
program does not need any external support to be executed (e.g., a modified
dynamic loader to perform runtime address resolution) and (ii) soundness is
preserved. Note, however, that our approach can be easily extended to use one
of the state-of-the-art solutions of binary rewriting, such as Ramblr [40], to
effectively delete the dead code.

4 Signedness-Agnostic Strided Intervals

In this section, we present a novel approach to the abstract modeling of numeric
entities with a fixed width. We define a new abstract domain named Signedness-
Agnostic Strided Interval to represent the set of values that a numeric entity (of
a given bit-width) can possibly assume.

4.1 Definition

A Signed-Agnostic Strided Interval (abbreviated SASI ) is indicated as r =
sr[lb, ub]w, where lb and ub are bit-vectors of w bits (called lower bound and
upper bound respectively), whereas sr (called stride), is a non-negative integer.

A SASI r represents the set of values: {lb, lb+wsr, lb+w2∗sr, ..., ub}, where
+w represents modular addition of bit-width w (i.e x +w y = (x + y) mod 2w).
Formally,

r = {(lb+ k ∗ sr) mod 2w ≤ ub, k ∈ N} (1)

For example, 2[1010, 0010]4 represents the set of values {1010, 1100,

1110, 0000, 0010}. Note that, the SASI 0[lb, lb]w represents the singleton lb.
A SASI variable can be graphically represented through a number circle, as

depicted in Figure 2. The set of numerical values represented by a SASI are
determined by traversing the number circle clockwise starting from the lower
bound lb up to the upper bound ub with increments of the stride value sr. SASI
can represent unsigned and signed variables alike.

For example, consider the SASI r = 1[0100, 1010]4 representing a variable
x (i.e., x ∈ r). r represents the values 4 ≤ x ≤ 10 if x is interpreted as an
unsigned variable, or the values (4 ≤ x ≤ 7) ∨ (−8 ≤ x ≤ −6) if interpreted as
signed. In the case of signed values, the South Pole and the North Pole divide
the positive and negative numbers: Positive numbers begin from the left of South
Pole, proceeding clockwise up to the left of North Pole. Similarly, negative values
begin from the right of the North Pole, proceeding clockwise down to the right
of South Pole. Note that, operations on SASI (Appendix A) do not assume
the signedness of variables, thus providing sound results for both signed and
unsigned interpretations.

Throughout this work we use the following notation: Bw and Ww indicate the
set of all the possible bit-vectors representable on w bits, and the set of all the
possible SASIs representable on the same number of bits, respectively. A modular
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operation on w bits is indicated as opw (e.g., +w), where x opw y = (x op y) mod
2w. We use the sequence representation bk to express a k-long sequence of the bit
b (b ∈ {0, 1}), and the symbol || to indicate sequence concatenation. Furthermore,
the symbol ≤ represents the lexicographic ordering in Bw, whereas ≤x represents
the relative ordering, with respect to the value x, on the number circle (Figure 2).
That is to say:

a ≤x b iff (a−w x) ≤ (b−w x) (2)

Informally, starting from x and proceeding clockwise on a number circle, a is
encountered before b.

Using the above notations, we now define several functions as needed for any
static analysis based on abstract interpretation.

Definition 1. Concretization Function. Given a SASI r = sr[lb, ub]w, the
concretization function γ : Ww → P (Bw) is defined as follows:

γ(⊥) = ∅
γ(r) = {lb, lb+w sr, lb+w 2 ∗ sr, ..., ub}
γ(>) = Bw

(3)

Where P (Bw) is the power set of Bw, ⊥ denotes an empty SASI (i.e., 0[, ]w)
and > denotes the full SASI (i.e., 1[0w, 1w]w).

Definition 2. Abstraction Function. Given a set of values V = {v1, v2, ..., vn},
the abstraction function α : P (Bw)→Ww is defined as follows:

α(∅) = ⊥
α(V ) = sr[a1, an]w, (aj)

n
j=1 = sort(v1, v2, ..., vn)

α(Bw) = >
(4)

where sr = gcd(d1, d2, ..., dn−1) and dj = aj+1 −w aj , for 1 ≤ j ≤ (n− 1). gcd
is the greatest common divisor function, and sort is a function sorting values in
ascending order.

Intuitively, given a set of bit-vectors, the abstraction function sorts its elements
in ascending order, thus creating the sequence (aj)

n
j=1. Then, it considers the first

and last elements as the lower and upper bounds respectively, and, starting from
the lower bound, it selects the greatest stride sr that includes all the elements
in (aj)

n
j=1 .

Definition 3. Membership Function. Given a bit-vector v and a SASI r =
sr[lb, ub]w, the membership function ∈ is defined as follows:

v ∈ r =


true if r = >
false if r = ⊥
v ≤lb ub ∧ (v −w lb)mod sr = 0 if r = sr[lb, ub]w

(5)
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Definition 4. Cardinality Function. Given a SASI r = sr[lb, ub]w the car-
dinality function # is defined as:

#(⊥) = 0

#(>) = 2w

#(r) =

⌊
ub− lb+ 1

sr

⌋
Definition 5. Ordering Operator. Given two SASIs r = sr[a, b]w and t =
st[c, d]w, the ordering operator v is defined as follows:

r v t =



False if r = > ∧ t 6= >
True if r = ⊥ ∨ t = > ∨

((a = c) ∧ (b = d) ∧
(sr mod st = 0))

a ∈ t ∧ b ∈ t ∧ (c 6∈ r ∨ d 6∈ r)
∧(a− c) mod st = 0 otherwise
∧ sr mod st = 0

(6)

In other words, one SASI is considered to be included in another if every
value in the former is contained in the latter, that is γ(r) ⊆ γ(t).

Note that, while (v, Ww) forms a partially ordered set (with least element
⊥ and greatest element >), it does not form a lattice as the ordering does not
always provide a unique least upper bound (or join) and greatest lower bound (or
meet). For example, consider the two SASIs 2[0010, 0100]4 and 2[1000, 1110]4.
Two minimum upper-bounds (i.e., having the same cardinality) for these SASIs
are 2[0010, 1110]4 and 2[1000, 0100]4. However, they are incomparable, thus vio-
lating the unique least upper bound requirement. Since a join and meet are not
available, we must define a deterministic pseudo-join and a pseudo-meet. For
spaces reasons, we present in this paper only the pseudo-join operator.

Definition 6. Pseudo-Join Operator. Given two SASI r = sr[a, b]w and

t = st[c, d]w, the pseudo-join operator
∼
t is defined as follows:

r
∼
t t =



t if r v t
r if t v r
> if a ∈ t ∧ b ∈ t ∧ c ∈ r ∧ d ∈ r
sad[a, d]w if c ∈ r ∧ b ∈ t ∧ a 6∈ t ∧ d 6∈ r
scb[c, b]w if a ∈ t ∧ d ∈ r ∧ c 6∈ r ∧ b 6∈ t
sad[a, d]w if a 6∈ t ∧ d 6∈ r ∧ c 6∈ r ∧ b 6∈ t ∧

#(sad[a, d]w) ≤ #(scb[c, b]w)
scb[c, b]w otherwise

(7)

Where sxy = gcd(sr, st, y−w x), with xy ∈ {(a, d), (c, b)} and gcd is the great
common divisor function.

The pseudo-join operator we defined assures that the SASI with the lowest
cardinality, and, thus, most precise, is always picked. However, it is not asso-

ciative, that is ((r
∼
t t)

∼
t z) 6= (r

∼
t (t

∼
t z)). Therefore, we define a generalized
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Algorithm 1 Generalized Join

1: procedure
∼⊔

(X)
2: (yj)

n
j=1 ← sort by lowerbound(X)

3: z ← ⊥
4: for i in (1 ... n) do

5: zi ← reduce(lambda x, y:
∼
t(x, y), (yj)

n
j=i || (yj)

(i−1)
j=1 )

6: if z = ⊥ or (#(zi) < #(z)) then
7: z ← zi
8: return z

pseudo-join operator (
∼⊔

). Given a set of n SASIs, this operator has to produce
the SASI z with the least cardinality possible, and such that the n SASIs are
included in z. Theoretically, there are n! possible join to consider to pick z.
However, as SASIs are traversed clockwise on the number circle, only n of these
should be considered. The results of the other n! − n joins are included in one
of these n joins. The generalized pseudo-join operator is defined in Algorithm 1,
and works as follows: Given a set X of n SASIs, it sorts X elements according
to the lexicographic ascending order of their lower bounds (Line 2), producing
a new sequence (i.e., (yj)

n
j=1). Then, referring to the circle number representa-

tion, it considers each SASI in (yj)
n
j=1 and proceeding clockwise joins it with

the other SASIs in lexicographical order, producing a final SASI zi (function
reduce at Line 5). Finally, the SASI zi with the least cardinality is returned.
The generalized pseudo-join operator is sound by construction, but not mono-
tone. Given three SASIs r, t and z such that r v t, it is not always true that
∼⊔

({r, z}) v
∼⊔

({t, z}). The lack of the monotone property does not assure termi-
nation of the analysis [27], as a least fixed point might not exist. Unfortunately,
this property holds for every domain based on number circles.

To address this problem, we defined a widening operator to guarantee ter-
mination of the analysis. As our widening operator is similar to the one already
defined in [27], and for space reasons, it is not presented in this paper.

5 Discussion

As stated in Section 3, our approach is based on the existence of a CFG recovery
procedure PCFG that guarantees that all the basic blocks of a function, and its
boundary, are retrieved. We do not make any assumption about the capability
of PCFG to resolve any indirect jumps, nor to resolve any path predicates. Given
such a CFG recovery procedure, our approach can guarantee the soundness of
the results.

Though our hypothesis might seem too restrictive in theory, we found it is not
to be in practice. In fact, if a binary does not contain data within the boundary of
a function f , state-of-the-art CFG recovery procedures, such as [34], can recover
every basic blocks and boundary of f precisely. In our experience, most of the
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employed compilers (e.g., gcc/g++) insert data only in specific data sections
(e.g., rodata). The only exception is represented by jump tables, which might
be inserted within a function boundary, thus fooling (in principle) decompilers
based on linear sweeping (e.g., objdump 5).

However, most recent decompilers based on recursive approaches implement
algorithms to precisely recover jump tables, and thus, providing in practice the
guarantee our approach needs.

6 Evaluation

We run two different evaluations. First, we evaluate the precision of SASI against
the related work on signedness-agnostic abstract domains. Then, we implement
our static program bloating approach in a tool, called BinTrimmer, and eval-
uate its efficiency.

6.1 Signedness-Agnostic Strided Intervals

To compare SASI against Wrapped Interval (WI) [27] and quantify its precision,
we performed two evaluations using range analyses on both source code and
binary files. As shown in the following two sections, on average SASI is 98%
more precise than the Wrapped Interval abstract domain.

Source code. For this evaluation, we implemented our Signedness-Agnostic
Signed Interval analysis on LLVM and downloaded the publicly-available Wrapped
Interval analysis. Then, we retrieved the same test suite utilized by Navas et al. in
their work [27]: the SPEC CPU2000 6. This dataset is an industry-standardized
CPU-intensive benchmark suite, developed from real user applications. As it
contains an outstanding amount of mathematical and bitwise operations, it is
particularly suited to evaluate abstract domains for numerical entities. Unfortu-
nately, two benchmarks of SPEC CPU2000 (i.e., 300.twolf and 255.vortex) were
unavailable at the time of the evaluation. Therefore, we used one more bench-
mark (462.libquantum) from the latest SPEC CPU (i.e., CPU2006 7). Note that
we did not use the whole SPEC CPU2006 suite, as it is only available for pur-
chase. Then, we ran the LLVM range analysis 8 on each program in our dataset
by using both the SASI and Wrapped Interval domains. For each one of these
test, we collected four statistics: The number of variables recovered by using
SASI and Wrapped Intervals, which were not > when the analyses reached a
fix-point (indicated as RSASI and RWI , respectively). The number of recovered
variables where SASIs provided a better over-approximation (i.e., lower cardi-
nality) than the Wrapped Intervals (indicated as PSASI), and finally the number
of variables whose Wrapped Interval representation was more precise than the

5 https://sourceware.org/binutils/docs/binutils/objdump.html
6 https://www.spec.org/cpu2000/
7 https://www.spec.org/cpu2006/
8 https://code.google.com/archive/p/range-analysis/
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Fig. 3: Source Code Evaluation. ∆ Variables Recovered indicates the difference between the
amount of variables recovered by SASI and Wrapped Intervals. ∆ Precise Intervals indicates the
difference between the number of instances SASI provided a better over-approximation and the
number of instances Wrapped Intervals did.

SASI’s (indicated as PWI). The results of our evaluation are represented in Fig-
ure 3. ∆ Variables Recovered indicates the difference between RSASI and RWI ,
and the percentages above each bar quantify the variable recovery effectiveness
of SASI (i.e., RSASI−RWI

RSASI∪RWI
). ∆ Precise Intervals indicates the difference between

PSASI and PWI), and, similarly, the percentages above each bar quantify the
variable recovery precision of SASI (i.e., PSASI−PWI

PSASI∪PWI
).

As one can see, SASI always recovered more variables than Wrapped In-
tervals (the ∆ of variables recovered is never a negative value), and, in most
cases, the variables recovered by SASI were more precise than those recovered
by Wrapped Interval. Nonetheless, there were few cases were the variables recov-
ered by Wrapped Intervals were more precise than SASI (e.g., 3.4% in bzip2).
We investigated them and discovered that it was caused by the lack of asso-
ciativity of the pseudo-join, as explained in Section 4. In fact, even though our
domain’s pseudo-join gives more precise results than the Wrapped Intervals’ if
taken individually, this is not strictly true if we chain them. However, our re-
sults clearly show that these cases are rare. For example, SASI recovered 1,170
(out of a total of 5,027) variables in gap whose intervals were more precise than
those provided by Wrapped Intervals. On the other hand, Wrapped Intervals
estimated only one variable in a more precise way than SASI. According to our
tests on source codes, we can conclude that, on an average, SASI is 98% more
precise than Wrapper Intervals (shown by ∆ of precise intervals).

Binary files. To compare SASI’s precision against Wrapped Interval’s on
binary files, we implemented Navas’s abstract domain in angr [34]. In this eval-
uation, we collected all the binaries that DARPA released in the run-up to the
CGC final event 9. Then, we considered the functions of each binary and per-

9 http://archive.darpa.mil/cybergrandchallenge/

http://archive.darpa.mil/cybergrandchallenge/
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Fig. 4: Binary Evaluation. ∆ Variables Recovered indicates the difference between the amount
of variables recovered by SASI and Wrapped Intervals. ∆ Precise Intervals indicates the difference
between the number of instances SASI provided a better over-approximation and the number of
instances Wrapped Intervals did.

formed the angr’s value-set analysis on them. Therefore, we collected the SASI
and Wrapped Interval representations of each variable (i.e., memory location and
CPU register) for each function at each program point, and collected the same
four statistics (i.e., RSASI , RWI , PSASI and PWI) already introduced during
the source code evaluation. The results collected are depicted in Figure 4.

As one can notice, even in this case SASI always outperformed Wrapped
Intervals in terms of variables recovered (the ∆ of variables recovered is never
a negative value). Furthermore, we noticed that SASI excelled over Wrapped
Intervals in terms of precision of recovered variables. In fact, in the case of
binaries, SASI succeeded to recovery strictly more precise variables (100% values
in ∆ Precise Values), in every test but once (91.6% success in KPRCA 00058).
This result clearly shows the advantage of employing the SASI abstract domain
when analyzing binary files.

6.2 BinTrimmer

Our approach to program debloating was implemented in a tool, called BinTrim-
mer. As introduced in Section 3, BinTrimmer retrieves and patches those basic
blocks in a binary that cannot be executed under any execution of a program.
Also, in the following we use the term partial trimming when a function is par-
tially removed, that is when some function’s basic blocks were removed, but not
all. BinTrimmer was evaluated by using six binaries linked against two different
C libraries: TinyExp 10 (containing 555 LOC) and b64 11 (containing 192 LOC).

10 https://github.com/codeplea/tinyexpr
11 https://github.com/littlstar/b64.c

https://github.com/codeplea/tinyexpr
https://github.com/littlstar/b64.c
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Table 1: BinTrimmer Results. Total Trimmed represents the total amount of code patched,
Min, max and Avg Partials indicates the amount of code partially removed with functions. Gadgets
Removed reports the amounts of ROP gadgets removed, Tot ICF is the total number of indirect
control-flow transfers, and ICF Resolved angr and ICF Resolved BinTrimmer indicates the percent-
age of ICF resolved by angr and BinTrimmer respectively. Time (min) shows the time elapsed to
analyze the binary.

Program Total Min Max Avg Gadgets Tot ICF Resolved ICF Resolved Time
trimmed Partials Partials Partials Removed ICF angr BinTrimmer (min)

TinyExpr1 53.69% 3.62% 83.63% 29.12% 41.3% 2419 99.25% 100% 43

TinyExpr2 7.43% 0% 0% 0% 4.9% 2449 98.65% 100% 87

TinyExpr3 65.67% 3.7% 83.63% 40.33% 56.9% 2419 99.25% 100% 37

b641 1.17% 0% 0% 0% 3.0% 2389 99.6% 100% 24

b642 50.37% 0% 0% 0% 10.6% 2389 99.6% 100% 24

b643 34.43% 1.13% 0% 0% 36.4% 2389 99.6% 100% 22

We dynamically linked both of these libraries to the examples provided on their
respective websites, for a total of six different programs.

After running BinTrimmer and removing the identified dead code, we dy-
namically linked every binary to their patched library, and fuzzed them using
AFL 12 for 48 hours. No crash was registered. Table 1 summarizes the results
of this evaluation. Total Trimmed is the percentage of code patched, the Min
Partials, Max Partials and Avg Partials values are calculated by considering
only those functions that are not completely patched by BinTrimmer. For each
of these, we calculate their size (in bytes) and the number of patched bytes and
report minimum, maximum, and average values respectively. The Gadgets Re-
moved column represents the percentage of ROP gadgets (retrieved with ROP-
Gadget 13) removed by patching each binary’s library. The columns Tot ICF,
ICF Resolved angr, and ICF Resolved BinTrimmer show the total number of
indirect control-flow transfers, the percentage of those resolved by angr alone,
and the percentage of indirect control-flow transfer resolved by BinTrimmer,
respectively. Finally, we report the Time in minutes employed to analyze each
program.

Note that, failing to resolve even a single indirect control-flow transfer (i.e.,
ICF resolved less than 100%) might result in an incomplete CFG, and, there-
fore, an unsafe program debloating. We also manually checked for each of the
six programs the completeness of the recovered CFG: while one CFG contained
a super-set of all the possible control-flow transfers (completeness), the remain-
ing five contained all and only the possible control-flow transfers (sound and
complete). Note also that BinTrimmer was able to patch code within functions
(Partials columns). This is an important result as in these cases we outperform
even a static linker: To the best of our knowledge, no linker can remove code
within functions.

Finally, as we can see from the reported results, there are cases where our
approach can remove a conspicuous portion of dead code: in TinyExpr3, we

12 http://lcamtuf.coredump.cx/afl/
13 https://github.com/JonathanSalwan/ROPgadget

http://lcamtuf.coredump.cx/afl/
https://github.com/JonathanSalwan/ROPgadget
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Table 2: Comparison of related debloating techniques against BinTrimmer

Technique Uses Static Source Code No Runtime No Testcases
Analysis Not Needed Support Needed

Occam [25] 3 7 3 7

Chisel [15] 7 7 3 7

Trimmer [33] 3 7 3 7

DamGate [5] 7 3 7 7

Piece-Wise [29] 3 7 7 3

BinTrimmer 3 3 3 3

soundly removed 65.67% of the text section, with 40.33% represented by basic
blocks within functions.

7 Related Work

Most of the current debloating techniques require test cases for a program to
be analyzed. Test cases are used, either statically [25] or dynamically [15,33], to
remove code that is not needed for their successful execution. Generally, these
techniques are helpful if the analyst has a priori knowledge of how the pro-
gram will be used, which is not true in the general case. Though there exist
test cases agnostic debloating techniques, they are highly specialized to spe-
cific languages [2,19,20], require the program source code [11,29,36], runtime
support [5], or a customized Java virtual machine [39]. Table 2 shows the sum-
mary of state-of-the-art debloating techniques on unsafe languages in compari-
son with BinTrimmer. To our knowledge, BinTrimmer is the first, test case
agnostic, static debloating technique that works directly on binaries.

7.1 CFG recovery

BinTrimmer’s primary purpose is to recover a complete and precise CFG stat-
ically. In the literature, a plethora of work has been done in this direction.
Generally, there are two approaches to statically recover a CFG: (i) performing
a linear sweep over the target binary, and (ii) performing a recursive disassembly
starting from the entry point of the binary.

More advanced disassemblers, decompilers, and binary analysis platforms
like IDA Pro, generally follow the latter approach [7,17]. Recursive disassembly
produces much better results than linear disassembly, but there are still issues
to be solved, the main one being the correct resolution of indirect, or computed
branch targets. Failing to resolve targets of an indirect branch entirely will lead
to missing code chunks in the recovered CFG. Several approaches [6,32] have
been proposed to recover jump tables by performing backward slicing, forward
expression substitution, and normal form comparison at the indirect jump site.



16 N. Redini et al.

Additionally, Kruegel et al. proposed a systematic method [22] consisting of
recursive disassembling and statistical analysis to disassemble as much code from
obfuscated binaries as possible. Finally, the angr binary analysis framework [34],
the framework used by BinTrimmer, uses a combination of the above-said
techniques to recover the best effort CFG. While the approaches mentioned
thus far are all-traditional-data-flow-analysis-based approaches, Kinder et al.
devised a framework, Jakstab [21], based on abstract interpretation to recover
an over-approximation of control flow graph for binaries.

All the above static CFG recovery techniques still suffer from accurately
identifying all the possible targets of indirect control flow instructions (i.e., indi-
rect jumps and calls). BinTrimmer iteratively refines the values of the indirect
control flow targets to create a complete and precise CFG.

7.2 Value range analysis

In the literature, there are many examples of such static analyses, including vari-
able bound checking (e.g., to detect buffer overflows) [37,38], detection of logic
bugs [10] (e.g., division-by-zero) and various pointer analyses techniques [16,45].
Balakrishnan et al. first proposed a range analysis [1] targeting x86 binaries that
can also keep track of the stride. However, strided-intervals require the signedness
of the variable and do not take care of the value overflows and underflows. To
handle this problem, Navas et al. proposed Wrapped Intervals [27] that is both
signedness-agnostic and can take care of the overflows and underflows. However,
Wrapped Intervals do not consider the stride and as we show in Section 6 this
resolves to less precise results.

8 Conclusions

In this work, we formally presented a new abstract domain called Signedness-
Agnostic Strided Interval (or SASI ). SASI is based on the concept of signedness-
agnosticism which, together with a careful design of the operations defined on
top of it, makes it particularly suited to be used for value set analyses. We
evaluated SASI using two different strategies. First, we showed its precision by
comparing our results against the related work. Then we showed its potential
by presenting a tool for binary analysis, named BinTrimmer, which uses SASI
to soundly identify and remove useless code within applications to reduce their
possible attack surface. Our implementation of SASI atop both LLVM (for source
code analysis) and angr (for binary analysis) is being open sourced to support
further research into the field.
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A Signedness-Agnostic Strided Interval Operations

We provided our abstract domain with every mathematical and logical oper-
ation included in today architectures’ instruction sets. However, due to space
constraints, we detail here only the or bitwise operation.
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Algorithm 2 Bitwise or

1: procedure |w(r, t)
2: S ← {}
3: for u = su[e, f ]w in ssplit(r) do
4: for v = sv[g, h]w in ssplit(t) do
5: t← min(ntz(su), ntz(sv))
6: sz = 2t

7: m← (1 << t)− 1
8: k ← (e&m)|(g&m)
9: u1 = [(e& ∼ m), (f& ∼ m)]
10: v1 = [(g& ∼ m), (h& ∼ m)]

11: [lb, ub]← u1

wr

|wv1
12: S = S

⋃
{sz [((lb& ∼ m)|k), (ub& ∼ m)|k)]}

13: return
∼⊔

(S)

A.1 Bitwise Or

To define a precise and sound bitwise or operation we leverage the unsigned
version of Warren’s algorithm [42], which performs the or operation on classic
non-wrapping ranges of values. Given two generic SASIs r = sr[a, b]w and t =
st[c, d]w, the algorithm used to calculate the bitwise or operation is shown in
Algorithm 2.

First, we split r and t on the south poles, thus avoiding any wrapping intervals
(i.e., intervals might include the values 1w and 0w). Then, for each u and v
resulting from the split, we create a new SASI calculating its stride (sz) and
bounds (lb and ub) separately. For the stride, we retrieve the number of trailing
zeros (function ntz) in the bit-vector representations of su and sv both, and
consider the minimum of them to set the stride sz (Lines 5 and 6). In fact, as
the strides su and sv have t low-order bits unset, all the values represented by
the SASI resulting from u |wrw v share the same t low-order bits. Therefore, the
choice of a stride equal to 2t is a sound choice (line 6). The value of these t-lower
bits is k = (e&m)|(g&m) (where m = (1 << t) − 1). On the other hand, the
(w− t) high-order bits are handled by masking out the obtained t low-order bits
and then applying unsigned version of Warren’s or algorithm to find the bounds
for the SASI resulting from u|wv (from line 9 to 11). Finally, the SASI resulting
from r |w t is obtained by applying the generalized join on the list of SASIs
collected by applying the algorithm just explained. Since Warren’s algorithm
employed is sound, the or operation is sound.
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